EXPLANATION

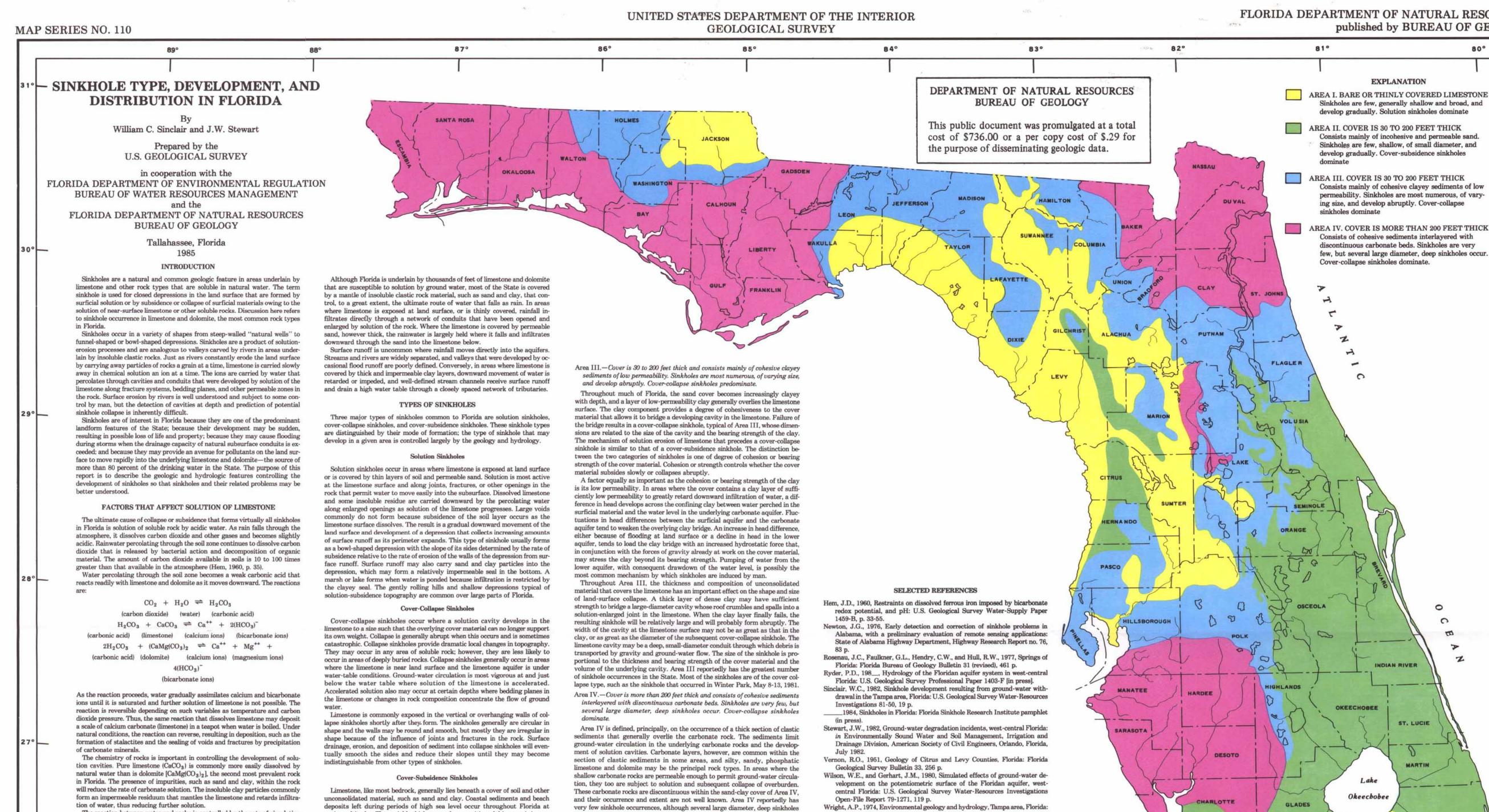
0

INDIAN RIVER

Lake

Okeecbobee

ST. LUCIE


MARTIN

m

PALM

____27°

MILES

are present in the area.

86°

tion of water, thus reducing further solution. The reaction between water and rocks is controlled by the rate of circulation

of water and this, in turn, is controlled by the rate of recharge and by the rate of ground-water flow. Solution is most intense where the corrosive water first contacts the limestone surface and along joints or vertical fracture zones within the limestone. Solution of limestone is also enhanced where ground-water flow is concentrated at depths below the limestone surface. For example, in areas where the water table is below the limestone surface, ground water is chemically most active in the zone of fluctuation of the water table. Consequently, solution of limestone is usually accelerated in this zone, causing still more vigorous ground-water circulation. Solution may also be accelerated along unconformities, bedding planes, and other changes in rock structure and texture where flow is concentrated if the water is chemically active.

The relation of sea level to land surface has been the dominant factor in the geologic history of Florida. Periods of submergence of the land and deposition of limestone have alternated with periods of exposure of the land and dissolution of the carbonate rocks. Table 1 summarizes the major geologic units deposited over the last 60 million years.

Fluctuations in sea level have had an important effect on hydrologic conditions and on development of sinkholes throughout the State. The central ridges that parallel Florida's east coast are capped by deposits of relict beaches that formed from about middle to late Miocene time. These beaches have stood above the sea for 5 to 10 million years. The many large sinkhole lakes and internally drained depressions in the central ridges attest to a long, uninterrupted period of weathering, solution, and subsidence of the underlying limestone

More recent (Pleistocene) fluctuations of sea level, associated with the advance and retreat of glaciers, have ranged from 400 feet below to about 100 feet above the present sea level. In response, ground-water levels have also fluctuated, and factors that affect solution of the limestone and development of sinkholes have varied.

During the warm interglacial period prior to the last major glaciation, the sea rose to about 100 feet above its present level. Wave action and coastal currents swept surficial sand and clay into land-surface depressions and produced a relatively subdued topography that consisted of beaches, dunes, and terraces that mantled an irregular bedrock surface. Many sinkholes, lakes, and springs were effectively buried, but major topographic features, such as bedrock ridges

and river valleys, are discernible through the surficial mantle.

25°

As the last glacial expansion kept progressively more of the world's water frozen on the land, the sea declined 300 to 400 feet below its present level. Florida's land area increased by more than a factor of two as the coasts moved seaward and gulfward to the edges of the continental shelf. This change in sea level lowered the base level toward which surface runoff and ground water would flow and affected rates of recharge, levels of the water table, and even direction of ground-water flow in some areas. As the glaciers waned, the sea gradually rose to its present level, and Florida's hydrologic system developed into its present state. However, the system is controlled to some extent by topography and solution conduits that were formed under varied conditions over geologic time.

deposits left during periods of high sea level occur throughout Florida at various altitudes. The variable thickness and composition of this cover is important in sinkhole development.

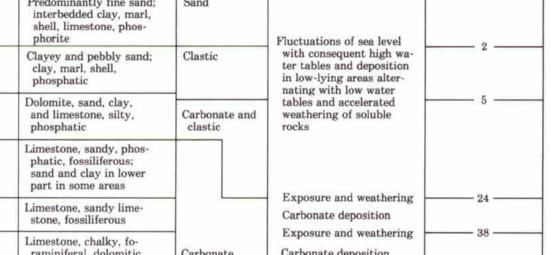
Cover-subsidence sinkholes occur where the cover material is relatively incohesive and permeable, and individual grains of sand move downward in sequence to replace grains that have themselves moved downward to occupy space formerly held by the dissolved limestone. In areas where the sand cover is 50 to 100 feet thick, subsidence sinkholes generally are only a few feet in diameter and depth.

Where the limestone is buried beneath a sufficient thickness of unconsolidated material, few sinkholes generally occur. Spalling of sand into solution cavities that have developed along joints in the limestone may cause subsidence due to upward migration of the cavities (a process known as piping) to form cylindrical holes at the land surface. If the overburden is incohesive sand, the upward-migrating cavity is dissipated by a general lessening of density over a large area, and the result will be a relatively broad and extensive subsidence of the land surface that occurs over a period of time. Generally, subsidence of this type may go unnoticed for several years. If the overburden is a dense plastic clay, its low permeability may impede downward movement of ground water and retard the development of solution cavities in the underlying limestone. For this reason, areas underlain by relatively impermeable clay generally are not affected by sinkholes.

TYPES OF LIMESTONE COVER

Four areas of sinkhole occurrence in Florida, based on the type and thickness of cover material overlying the limestone, are described in this section and are delineated on the map.

Area I.—Bare or thinly covered limestone. Sinkholes are few. Generally shallow and broad, and develop gradually. Solution sinkholes dominate.


Throughout large areas of the State, the cover material ranges in thickness from less than a foot to about 25 feet (Area I on map). Generally, the cover material is very permeable, and the effect, in terms of solution development of the limestone, is that of bare limestone exposed to weathering. Solution at the limestone surface and in joints near the surface decreases with depth, but the solution of limestone is the dominant process in landscape development throughout Area I. Area I reportedly has very few collapse sinkholes, and those

that occur generally are very shallow and broad and develop slowly. Area II.-Cover is 30 to 200 feet thick and consists mainly of incohesive and permeable sand. Sinkholes are few, shallow, of small diameter, and develop gradually. Cover-subsidence sinkholes dominate.

In areas where limestone is covered by materials that are relatively incohesive and permeable, sinkholes develop by gradual subsidence (Area II). In some areas, particularly where the sand cover is relatively thick, consolidation and compaction of the sand grains lend a certain cohesiveness. Generally, cover-subsidence sinkholes are only a few feet in diameter and depth. Their small size and innocuous mode of occurrence evolve because cavities in the limestone surface cannot develop to an appreciable size before they are filled with sand. The cover sand in Area II is relatively permeable; water infiltrates directly to the water table, which may be in the sand or limestone, depending on the topography. Few sinkholes develop in Area II. Most sinkholes are less than 10 feet deep and average 5 to 15 feet in diameter.

87°

Wright, A.P., 1974, Environmental geology and hydrology, Tampa area, Florida: Florida Bureau of Geology Special Publication 9, 94 p.

Geologic Names Committee, 1983, Major geochronologic and chronostratigraphic units: U.S. Geological Survey. ²Includes all or parts of Caloosahatchee Marl, Bone Valley Formation, Alachua Formation, and Tamiami Formation.

BROWARD COLLIER -- 26° MON ROE DADE

82°

Table 1.-Geologic framework [Modified from Wilson and Gerhart, 1980, table 1]

System	Series	Stratigraphic unit	General lithology	Major lithologic unit	Geologic process	Age estimate of boundaries in million year
Quaternary	Holocene Pleistocene	Surficial sand, terrace sand, phosphorite	Predominantly fine sand; interbedded clay, marl, shell, limestone, phos- phorite	Sand	Fluctuations of sea level with consequent high wa- ter tables and deposition in low-lying areas alter- nating with low water tables and accelerated weathering of soluble rocks	2
Tertiary	Pliocene	Undifferentiated deposits ²	Clayey and pebbly sand; clay, marl, shell, phosphatic	Clastic		2
	Miocene	Hawthorn Formation	Dolomite, sand, clay, and limestone, silty, phosphatic	Carbonate and clastic		5
		Tampa Limestone	Limestone, sandy, phos- phatic, fossiliferous; sand and clay in lower part in some areas	Exposure and weathering Carbonate deposition Carbonate deposition taining evaporites		
	Oligocene	Suwannee Limestone	Limestone, sandy lime- stone, fossiliferous		Carbonate deposition Exposure and weathering Carbonate deposition Exposure and weathering Carbonate deposition Exposure and weathering	24 —
	Eocene	Ocala Limestone	Limestone, chalky, fo- raminiferal, dolomitic near bottom			38
		Avon Park Formation	Limestone and hard brown dolomite; intergranular evaporite in lower part in some areas			55
		Oldsmar Formation	Dolomite and limestone, containing intergranu- lar gypsum in most areas			63 —
	Paleocene	Cedar Keys Limestone	Dolomite and limestone containing beds of anhydrite			